Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Braz. j. infect. dis ; 24(1): 85-88, Feb. 2020. tab, graf
Article in English | LILACS | ID: biblio-1089325

ABSTRACT

ABSTRACT The antigenic potential of seven immunogenic peptides of the dengue virus was evaluated in the sera of patients with dengue confirmed by IgM/IgG serology. Antibodies IgM and IgG against dengue virus peptides were analyzed by ELISA in 31 dengue sero-positive and 20 sero-negative patients. The P5 peptide showed significant IgG immunoreactivity mostly in the sera of patients with dengue without warning signs in comparison with patients with dengue with warning signs, correlating with mild disease. This finding suggests that the low antibody response against P5 epitope could be a risk factor for higher susceptibility to dengue virus infection with warning signs, and that P5 could be a potential antigen for vaccine development.


Subject(s)
Humans , Male , Female , Child , Adolescent , Adult , Middle Aged , Aged , Young Adult , Peptides/immunology , Viral Envelope Proteins/immunology , Dengue Virus/immunology , Dengue Vaccines , Antibodies, Viral/immunology , Epitopes/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Enzyme-Linked Immunosorbent Assay , Statistics, Nonparametric , Dengue/immunology , Dengue/prevention & control , Antibody Formation , Antigens, Viral/immunology
2.
Braz. j. infect. dis ; 19(4): 403-409, July-Aug. 2015. tab, ilus
Article in English | LILACS | ID: lil-759282

ABSTRACT

Human cytomegalovirus is a ubiquitous pathogen that infects the majority of the world's population. After long period of time co-evolving with human being, this pathogen has developed several strategies to evade host immune surveillance. One of the major trick is encoding homologous to those of the host organism or stealing host cellular genes that have significant functions in immune system. To date, we have found several viral immune analogous which include G protein coupled receptor, class I major histocompatibility complex and chemokine. Chemokine is a small group of molecules which is defined by the presence of four cysteines in highly conserved region. The four kinds of chemokines (C, CC, CXC, and CX3C) are classified based on the arrangement of 1 or 2 N-terminal cysteine residues. UL128 protein is one of the analogous that encoded by human cytomegalovirus that has similar amino acid sequences to the human CC chemokine. It has been proved to be one of the essential particles that involved in human cytomegalovirus entry into epithelial/endothelial cells as well as macrophages. It is also the target of potent neutralizing antibodies in human cytomegalovirus-seropositive individuals. We had demonstrated the chemotactic trait of UL128 protein in our previous study. Recombinant UL128 in vitrohas the ability to attract monocytes to the infection region and enhances peripheral blood mononuclear cell proliferation by activating the MAPK/ERK signaling pathway. However, the way that this viral encoded chemokine interacting with peripheral blood mononuclear cells and the detailed mechanism that involving the virus entry into host cells keeps unknown. Here we performed in vitroinvestigation into the effects of UL128 protein on peripheral blood mononuclear cell's activation and receptor binding, which may help us further understand the immunomodulatory function of UL128 protein as well as human cytomegalovirus diffusion mechanism.


Subject(s)
Humans , Chemokines, CC , Cytomegalovirus , Gene Expression Regulation, Viral/genetics , Leukocytes, Mononuclear/virology , Membrane Glycoproteins/immunology , Viral Envelope Proteins/immunology , Cells, Cultured , Chemokines, CC/genetics , Chemokines, CC/immunology , Cross-Linking Reagents , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Receptors, Chemokine/genetics , Recombinant Proteins/immunology
3.
Rev. bras. enferm ; 67(5): 679-683, Sep-Oct/2014.
Article in Portuguese | LILACS, BDENF | ID: lil-731223

ABSTRACT

Estudo Histórico Social que tem como objeto notícias sobre o Levantamento de Recursos e Necessidades de Enfermagem no Brasil, publicadas na Revista Brasileira de Enfermagem entre 1955 e 1958. A fonte primária foi constituída pelos exemplares da Revista Brasileira de Enfermagem, publicados dentro do recorte temporal do estudo. As fontes secundárias foram constituídas por livros, artigos, dissertações e teses relativas à história da Enfermagem. A análise dos dados teve apoio das fontes secundárias e do pensamento do sociólogo Pierre Bourdieu. Os dados evidenciaram que a Revista Brasileira de Enfermagem, além de oportunizar a divulgação de notícias acerca do Levantamento, proporcionou visibilidade ao mesmo mediante a veiculação dessas notícias e, por fim, teve o efeito simbólico de conferir poder e prestígio à Enfermagem Brasileira.


Social historical study that has as object news related to the Assessment of the Resources and Needs of Nursing in Brazil published in the Revista Brasileira de Enfermagem between 1955 and 1958. The primary source is constituted of copies of Revista Brasileira de Enfermagem published within the selected period of the study. The secondary sources are constituted of books, papers, dissertations and thesis related to the Nursing history. The data analysis was supported by the secondary sources and the thought of the sociologist Pierre Bourdieu. The results evidenced that Revista Brasileira de Enfermagem, in addition to making possible the dissemination of news about the Assessment provided visibility to it and, at last, had the symbolic effect of giving power and prestige to the Brazilian Nursing.


Estudio Histórico Social que tiene como objeto noticias referentes al Levantamiento de Recursos y Necesidades de Enfermería en Brasil publicadas en la Revista Brasileira de Enfermagem entre 1955 y 1958. La fuente primaria se constituye de los ejemplares de la Revista Brasileira de Enfermagem publicados dentro del recorte temporal do estudio. Las fuentes secundarias están constituidas de libros, artículos disertaciones y tesis relativas a la historia de la Enfermería. El análisis de los datos tuvo apoyo de las fuentes secundarias y del pensamiento del Sociólogo Pierre Bourdieu. Los resultados evidencian que la Revista Brasileira de Enfermagem, además de posibilitar la divulgación de noticias acerca del Levantamiento proporcionó visibilidad al mismo mediante la divulgación de esas noticias y, por fin, tuve el efecto simbólico de conferir poder y prestigio a la Enfermería Brasileña.


Subject(s)
Animals , Female , Mice , Hepatitis B Surface Antigens/genetics , Hepatitis B Vaccines/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Hepatitis Vaccines/genetics , Artificial Gene Fusion , Base Sequence , Hepacivirus/genetics , Hepacivirus/immunology , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Immunization , In Vitro Techniques , Molecular Sequence Data , Vaccines, DNA/genetics
4.
Rev. Soc. Bras. Med. Trop ; 46(1): 97-99, Jan.-Feb. 2013. ilus, tab
Article in English | LILACS | ID: lil-666813

ABSTRACT

INTRODUCTION: West Nile virus (WNV) is a flavivirus with a natural cycle involving mosquitoes and birds. Over the last 11 years, WNV has spread throughout the Americas with the imminent risk of its introduction in Brazil. METHODS: Envelope protein domain III of WNV (rDIII) was bacterially expressed and purified. An enzyme-linked immunosorbent assay with WNV rDIII antigen was standardized against mouse immune fluids (MIAFs) of different flavivirus. RESULTS: WNV rDIII reacted strongly with St. Louis encephalitis virus (SLEV) MIAF but not with other flaviviruses. CONCLUSIONS: This antigen may be a potentially useful tool for serologic diagnosis and may contribute in future epidemiological surveillance of WNV infections in Brazil.


Subject(s)
Animals , Mice , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Recombinant Proteins/immunology , Viral Envelope Proteins/immunology , West Nile virus/immunology , Brazil , Enzyme-Linked Immunosorbent Assay
5.
Braz. j. med. biol. res ; 45(7): 583-590, July 2012. ilus
Article in English | LILACS | ID: lil-639469

ABSTRACT

Human cytomegalovirus glycoprotein B (gB) represents a target for diagnosis and treatment in view of the role it plays in virus entry and spread. Nevertheless, to our knowledge, rare detection of a gB antigen has been reported in transplant patients and limited information is available about diagnostic gB monoclonal antibodies (mAbs). Our aim was to develop gB mAbs with diagnostic potential. Hydrophilic gB peptides (ST: amino acids 27-40, SH: amino acids 81-94) of favorable immunogenicity were synthesized and used to immunize BALB/c mice. Two mAbs, named ZJU-FH6 and ZJU-FE6, were generated by the hybridoma technique and limited serial dilution and then characterized by indirect ELISA, Western blotting, immunoprecipitation, and immunohistochemical staining. The mAbs displayed high titers of specific binding affinities for the ST and SH synthetic peptides at an mAb dilution of 1:60,000 and 1:240,000, respectively. Western blotting and immunoprecipitation indicated that these mAbs recognized both denatured and native gB of the Towne and AD169 strains. The mAbs, when used as the primary antibody, showed positive staining in cells infected with both Towne and AD169 strains. The mAbs were then tested on patients submitted to allogeneic hematopoietic stem cell transplantation. The gB antigen positivity rates of the patients tested using ZJU-FH6 and ZJU-FE6 were 62.0 and 63.0%, respectively. The gB antigen showed a significant correlation with the level of pp65 antigen in peripheral blood leukocytes. In conclusion, two potential diagnostic gB mAbs were developed and were shown to be capable of recognizing gB in peripheral blood leukocytes in a reliable manner.


Subject(s)
Animals , Humans , Mice , Antibodies, Monoclonal , Antibodies, Viral/immunology , Cytomegalovirus Infections/diagnosis , Cytomegalovirus/immunology , Viral Envelope Proteins/immunology , Antibodies, Monoclonal/immunology , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Hematopoietic Stem Cell Transplantation , Immunohistochemistry , Immunoprecipitation , Mice, Inbred BALB C , Sensitivity and Specificity
6.
Rev. argent. microbiol ; 44(2): 75-84, jun. 2012. ilus, graf, tab
Article in Spanish | LILACS | ID: lil-657615

ABSTRACT

En la Argentina, la rabia está circunscripta a algunas provincias del norte. La disponibilidad de nuevas vacunas que eliminen la manipulación del virus rábico y que permitan el control de la enfermedad es de importancia estratégica nacional y regional. Las vacunas basadas en poxvirus recombinantes se han utilizado con éxito como vacunas antirrábicas a nivel mundial. SI bien estos sistemas no están disponibles comercialmente, la plataforma de obtención de virus canarypox (CNPV) recombinantes ya ha sido implementada en nuestro laboratorio. El objetivo de este trabajo fue obtener y evaluar un candidato a vacuna antirrábica basado en CNPV recombinantes que expresan la glicoproteína G (RG) del virus rábico (RV). Se construyó un virus recombinante que expresa la secuencia codificante de RG (CNPV-RG). La inoculación de ratones con este virus indujo altos títulos de anticuerpos seroneutralizantes de RV (3,58 y 9,76 Ul/ml después de una o dos inmunizaciones, respectivamente) y protegió al 78 % de los animales desafiados intracerebralmente con RV. Además, se determinó que el CNPV-RG posee una potencia relativa de 3,5 Ul/ml. Los resultados obtenidos constituyen la primera etapa en la evaluación del CNPV-RG como candidato a vacuna antirrábica. Se requerirán nuevos ensayos para confirmar su utilidad en especies de interés veterinario.


In Argentina, rabies is limited to some northern provinces. Availability of new vaccines abolishing the handling of the rabies virus and allowing disease control has regional and national strategic importance. Vaccines based on recombinant poxviruses have been successfully used as antirabic vaccines worldwide. Although these systems are not commercially available, the platform to obtain recombinant canarypox viruses (CNPV) has been previously set up in our laboratory. The aim of this work was the development and evaluation of an antirabic vaccine candidate based on recombinant CNPV expressing the rabies virus (RV) glycoprotein G (RG). A recombinant virus (CNPV-RG) expressing the RG coding sequence was designed. Inoculation of mice with this virus induced high RV seroneutralizing antibodies (3.58 and 9.76 lU/ml after 1 or 2 immunizations, respectively) and protected 78% of intracerebrally RV-challenged animals. In addition, it was determined that CNPV-RG has a relative potency of 3.5 lU/ml. The obtained results constituted the first stage of CNPV-RG evaluation as antirabic vaccine candidate. Further assays will be necessary to confirm its utility in species of veterinary Interest.


Subject(s)
Animals , Chick Embryo , Cricetinae , Mice , Antigens, Viral/immunology , Canarypox virus/immunology , Glycoproteins/immunology , Rabies Vaccines , Viral Envelope Proteins/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Antigens, Viral/genetics , Chlorocebus aethiops , Canarypox virus/genetics , Canarypox virus/growth & development , Canarypox virus/isolation & purification , Cell Line/virology , Fibroblasts/virology , Glycoproteins/genetics , Kidney , Mesocricetus , Peptide Fragments/genetics , Peptide Fragments/immunology , Rabies Vaccines/immunology , Rabies/prevention & control , Specific Pathogen-Free Organisms , Virus Cultivation , Vaccines, Synthetic/immunology , Vero Cells/virology , Viral Envelope Proteins/genetics
7.
Braz. j. med. biol. res ; 44(5): 421-427, May 2011. ilus
Article in English | LILACS | ID: lil-586516

ABSTRACT

Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5) expressing three proteins (E7, E6, and E5) of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id) route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose) induced a strong activation of E7-specific interferon-γ (INF-γ)-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70 percent of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50 percent of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.


Subject(s)
Animals , Female , Mice , Cancer Vaccines/administration & dosage , /immunology , Oncogene Proteins, Viral/immunology , Simplexvirus/immunology , Vaccines, DNA/administration & dosage , Viral Envelope Proteins/immunology , /immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , /genetics , Injections, Intradermal , Neoplasms, Experimental/immunology , Neoplasms, Experimental/prevention & control , Oncogene Proteins, Viral/genetics , Simplexvirus/genetics , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Viral Envelope Proteins/genetics
8.
Rev. argent. microbiol ; 42(1): 11-17, feb. 2010. ilus, tab
Article in English | LILACS | ID: lil-634646

ABSTRACT

Equine viral arteritis (EVA) is a contagious viral disease that frequently causes mild or subclinical infections in adult horses. Only one EAV serotype has been described. However, there are differences in antigenicity, pathogenicity and neutralization characteristics of virus field strains. The interaction of two viral proteins, GP5 and M, is critical for infectivity and amino acid changes in the GP5 sequences have an effect on the neutralizing phenotype, regardless the effects of other viral proteins. The objective of the present study was to evaluate the neutralization phenotypes of the 5 unique Argentine EAV strains reported and to compare them with the neutralization phenotypes of the EAV-UCD reference strain, with special emphasis on the analysis of M and GP5 proteins. The strains had a similar neutralization phenotype pattern when anti-EAV serum, derived from EAV seropositive horses, was used in the analysis. Meanwhile, low titers were observed when equine polyclonal anti-EAV reference sera were used in the assay. Argentine strains have almost the same amino acid substitutions, with the exception of LP01 strain, that mainly involves the first variable region V1, especially in neutralization sites B and C. However, they are fairly different from the EAV-UCD strain. Nevertheless, the nucleotide and amino acid differences observed among the Argentine strains LP02/R, LP02/C, LP02/P and LP-LT-ARG did not show any variations in the neutralization phenotype.


La arteritis viral equina (AVE) ocasiona infecciones, en su mayoría subclínicas, pero puede causar abortos y enfermedad respiratoria. Si bien se ha descrito un solo serotipo de AVE, existen diferencias en cuanto a la antigenicidad, patogenicidad y patrones de neutralización en las cepas de campo. Los ORF5 y ORF6 del virus codifican las proteínas de envoltura GP5 y M; la interacción entre estas proteínas es crítica para la infectividad. Los cambios en las secuencias de aminoácidos en la proteína GP5, especialmente en la región V1, afectan el fenotipo neutralizante, sin tener en cuenta variaciones aminoacídicas de otras proteínas virales. En este estudio evaluamos los fenotipos neutralizantes de las 5 únicas cepas de arteritis viral equina aisladas en Argentina y los comparamos con los de la cepa de referencia EAV-UCD por virus neutralización cruzada y análisis de secuencias aminoacídicas de las proteínas M y GP5. Las cepas argentinas presentaron un patrón de neutralización similar cuando se utilizaron sueros positivos del banco de sueros, mientras que fueron neutralizadas en menor medida por los sueros policlonales de referencia anti-AVE. A excepción de la cepa LP01, las cepas argentinas tienen casi las mismas sustituciones aminoacídicas en la primera región variable V1 de la proteína GP5, específicamente en los sitios neutralizantes B y C, pero difieren en gran medida respecto de la cepa de referencia EAV-UCD. Las diferencias encontradas en los aislamientos LP02/R, LP02/C, LP02/P y LT-LP-ARG no se reflejaron en variaciones en el fenotipo neutralizante.


Subject(s)
Animals , Antigens, Viral/immunology , Equartevirus/immunology , Arterivirus Infections/virology , Horse Diseases/virology , Viral Envelope Proteins/immunology , Viral Matrix Proteins/immunology , Amino Acid Sequence , Argentina , Antigens, Viral/genetics , Equartevirus/classification , Equartevirus/genetics , Equartevirus/isolation & purification , DNA, Complementary/genetics , DNA, Viral/genetics , Genetic Variation , Horses , Molecular Sequence Data , Neutralization Tests , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Homology, Amino Acid , Species Specificity , Viral Envelope Proteins/genetics , Viral Matrix Proteins/genetics
9.
Braz. j. med. biol. res ; 43(2): 217-224, Feb. 2010. ilus, graf
Article in English | LILACS | ID: lil-538233

ABSTRACT

Bovine herpesvirus type 5 (BoHV-5) is an important pathogen of cattle in South America. We describe here the construction and characterization of deletion mutants defective in the glycoprotein E (gE) or thymidine kinase (TK) gene or both (gE/TK) from a highly neurovirulent and well-characterized Brazilian BoHV-5 strain (SV507/99). A gE-deleted recombinant virus (BoHV-5 gE∆) was first generated in which the entire gE open reading frame was replaced with a chimeric green fluorescent protein gene. A TK-deleted recombinant virus (BoHV-5 TK∆) was then generated in which most of the TK open reading frame sequences were deleted and replaced with a chimeric â-galactosidase gene. Subsequently, using the BoHV-5 gE∆ virus as backbone, a double gene-deleted (TK plus gE) BoHV-5 recombinant (BoHV-5 gE/TK∆) was generated. The deletion of the gE and TK genes was confirmed by immunoblotting and PCR, respectively. In Madin Darby bovine kidney (MDBK) cells, the mutants lacking gE (BoHV-5 gE∆) and TK + gE (BoHV-5 gE/TK∆) produced small plaques while the TK-deleted BoHV-5 produced wild-type-sized plaques. The growth kinetics and virus yields in MDBK cells for all three recombinants (BoHV-5 gE∆, BoHV-5 TK∆ and BoHV-5 gE/TK∆) were similar to those of the parental virus. It is our belief that the dual gene-deleted recombinant (BoHV-5 gE/TK∆) produced on the background of a highly neurovirulent Brazilian BoHV-5 strain may have potential application in a vaccine against BoHV-5.


Subject(s)
Animals , Cattle , Gene Deletion , /genetics , Thymidine Kinase/genetics , Viral Envelope Proteins/genetics , Defective Viruses/genetics , Electrophoresis, Polyacrylamide Gel , Green Fluorescent Proteins/genetics , /immunology , /pathogenicity , Immunoblotting , Polymerase Chain Reaction , Recombination, Genetic/genetics , Thymidine Kinase/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Envelope Proteins/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence/genetics
10.
Braz. j. med. biol. res ; 43(2): 150-159, Feb. 2010. tab, ilus
Article in English | LILACS | ID: lil-538237

ABSTRACT

Bovine herpesvirus 5 (BoHV-5), the agent of herpetic meningoencephalitis in cattle, is an important pathogen of cattle in South America and several efforts have been made to produce safer and more effective vaccines. In the present study, we investigated in rabbits the virulence of three recombinant viruses constructed from a neurovirulent Brazilian BoHV-5 strain (SV507/99). The recombinants are defective in glycoprotein E (BoHV-5gEÄ), thymidine kinase (BoHV-5TKÄ) and both proteins (BoHV-5gEÄTKÄ). Rabbits inoculated with the parental virus (N = 8) developed neurological disease and died or were euthanized in extremis between days 7 and 13 post-infection (pi). Infectivity was detected in several areas of their brains. Three of 8 rabbits inoculated with the recombinant BoHV-5gEÄ developed neurological signs between days 10 and 15 pi and were also euthanized. A more restricted virus distribution was detected in the brain of these animals. Rabbits inoculated with the recombinants BoHV-5TKÄ (N = 8) or BoHV-5gEÄTKÄ (N = 8) remained healthy throughout the experiment in spite of variable levels of virus replication in the nose. Dexamethasone (Dx) administration to rabbits inoculated with the three recombinants at day 42 pi did not result in viral reactivation, as demonstrated by absence of virus shedding and/or increase in virus neutralizing titers. Nevertheless, viral DNA was detected in the trigeminal ganglia or olfactory bulbs of all animals at day 28 post-Dx, demonstrating they were latently infected. These results show that recombinants BoHV-5TKÄ and BoHV-5gEÄTKÄ are attenuated for rabbits and constitute potential vaccine candidates upon the confirmation of this phenotype in cattle.


Subject(s)
Animals , Rabbits , Herpesviridae Infections/virology , /pathogenicity , Herpesvirus Vaccines/immunology , Viral Envelope Proteins/immunology , Viral Proteins/immunology , Brain/virology , DNA, Viral/analysis , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Herpesviridae Infections/immunology , Herpesviridae Infections/prevention & control , /genetics , /immunology , Mutation , Thymidine Kinase/genetics , Virus Replication , Vaccines, Attenuated/immunology , Vaccines, Synthetic/immunology , Virulence/genetics , Virus Activation/drug effects
11.
An. acad. bras. ciênc ; 81(4): 663-669, Dec. 2009. ilus, tab
Article in English | LILACS | ID: lil-529927

ABSTRACT

Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the developent of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmid DNA-vaccine encoded, are mainly presented to the immune system through Major Histocompatibility Complex class I - MHC I molecules. The MHC I presentation via is mostly associated with a cellular cytotoxic response and often do not elicit a satisfactory humoral response. One of the main strategies to target DNA-encoded antigens to the MHC II compartment is expressing the antigen within the Lysosome-Associated Membrane Protein (LAMP). The flavivirus envelope protein is recognized as the major virus surface protein and the main target for neutralizing antibodies. Different groups have demonstrated that co-expression of flavivirus membrane and envelope proteins in mammalian cells, fused with the carboxyl-terminal of LAMP, is able to induce satisfactory levels of neutralizing antibodies. Here we reviewed the use of the envelope flavivirus protein co-expression strategy as LAMP chimeras with the aim of developing DNA vaccines for dengue, West Nile and yellow fever viruses.


A vacinação é a estratégia mais prática e o melhor custo-benefício para prevenir a maioria das infecções dos flavivirus, para os quais existe vacina disponível. Entretanto, as vacinas baseadas em vírus atenuados podem potencialmente promover efeitos colaterais e, mais raramente, reações fatais. Diante deste cenário, o desenvolvimento de estratégias alternativas de vacinação, como vacinas baseadas em DNA codificando seqüências específicas dos flavivirus, está sendo considerado. Antí-genos citoplasmáticos endógenos, caracteristicamente codificados por vacinas de DNA plasmidial, são majoritariamente apresentados ao sistema imune através de moléculas do Complexo Maior de Histocompatibilidade de classe I - MHC I. A via de apresentação MHC I é mais associada à resposta celular citotóxica e, frequentemente, não elicita uma resposta humoral satisfatória. Uma das principais estratégias para direcionar antígenos codificados pelas vacinas de DNA para o compartimento MHC II é expressar estes antígenos dentro da Proteína de Associação à Membrana Lisossomal (LAMP). A proteína do envelope dos flavivirus é reconhecidamente a principal proteína de superfície viral e o principal alvo para anticorpos neutralizantes. Diferentes grupos têm demonstrado que a co-expressão das proteínas de membrana e do envelope dos flavivirus em células de mamíferos, fusionada com a porção carboxi-terminal de LAMP, é capaz de induzir níveis satisfatórios de anticorpos neutralizantes. Neste trabalho revisamos a estratégia de co-expressão da proteína do envelope dos flavivírus, como quimeras de LAMP, com o objetivo de desenvolver vacinas de DNA contra a febre do Oeste do Nilo, dengue e febre amarela.


Subject(s)
Humans , Flavivirus Infections/prevention & control , Flavivirus/immunology , Lysosome-Associated Membrane Glycoproteins/immunology , Vaccines, DNA/immunology , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Dengue/immunology , Dengue/prevention & control , Flavivirus Infections/immunology , Flavivirus/chemistry , West Nile Fever/immunology , West Nile Fever/prevention & control , Yellow Fever/immunology , Yellow Fever/prevention & control
12.
Experimental & Molecular Medicine ; : 812-823, 2009.
Article in English | WPRIM | ID: wpr-174319

ABSTRACT

Cholera toxin, which has been frequently used as mucosal adjuvant, leads to an irreversible activation of adenylyl cyclase, thereby accumulating cAMP in target cells. Here, it was assumed that beta2-adrenergic agonist salbutamol may have modulatory functions of immunity induced by DNA vaccine, since beta2-adrenergic agonists induce a temporary cAMP accumulation. To test this assumption, the present study evaluated the modulatory functions of salbutamol co-administered with DNA vaccine expressing gB of herpes simplex virus (HSV) via intranasal (i.n.) route. We found that the i.n. co-administration of salbutamol enhanced gB-specific IgG and IgA responses in both systemic and mucosal tissues, but optimal dosages of co-administered salbutamol were required to induce maximal immune responses. Moreover, the mucosal co-delivery of salbutamol with HSV DNA vaccine induced Th2-biased immunity against HSV antigen, as evidenced by IgG isotypes and Th1/Th2-type cytokine production. The enhanced immune responses caused by co-administration of salbutamol provided effective and rapid responses to HSV mucosal challenge, thereby conferring prolonged survival and reduced inflammation against viral infection. Therefore, these results suggest that salbutamol may be an attractive adjuvant for mucosal genetic transfer of DNA vaccine.


Subject(s)
Animals , Mice , Adjuvants, Immunologic/pharmacology , Adrenergic beta-Agonists/immunology , Albuterol/immunology , Antibodies, Viral/immunology , Chlorocebus aethiops , Cytokines/immunology , Dose-Response Relationship, Drug , Dose-Response Relationship, Immunologic , Herpes Simplex/immunology , Herpes Simplex Virus Vaccines , Immunity, Mucosal/drug effects , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Simplexvirus/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Vaccines, DNA/immunology , Vero Cells , Viral Envelope Proteins/immunology
13.
Rev. chil. infectol ; 25(supl.1): S14-S18, abr. 2008.
Article in Spanish | LILACS | ID: lil-480661

ABSTRACT

Rabies glycoprotein is the only exposed protein which is inserted in the viral lipidie envelope. This 65-67 kda protein is a N-glycosilated transmembrane protein forming trimers on the viral surface. It has been identified as the major pathogenicity determinant, playing a role in the budding, viral axonal transport during infection, apoptosis and immune evasion. It is also the major antigen responsible for the protective immune response and it is been used in commercial recombinant vaccines. Its structure, antigenicity and pathogenic role have been well studied, identifying main antigenic sites that have the responsibility for virulence, cellular receptors attachment and epitope acquisition.


La glicoproteína del virus rábico es la única proteína viral expuesta, encontrándose inserta en la envoltura lipídica. Esta molécula de 65-67 kda corresponde a una proteína trans-membrana N-glicosilada que se dispone en forma de trímeros en la superficie viral. Ha sido identificada como el mayor determinante de pato-genicidad, participando además en procesos de yemación, flujo axonal del virion durante la infección, apoptosis y evasión de la respuesta inmune. Es también el principal antígeno inductor de la respuesta inmune protectora siendo utilizado en vacunas recom-binantes comerciales. Su estructura, antigenicidad e implicancias en la patogenia han sido bien estudiadas identificándose los principales sitios antigénicos responsables de la patogenicidad, unión a receptores celulares y formación de epitopos.


Subject(s)
Animals , Humans , Antigens, Viral , Glycoproteins , Rabies virus/pathogenicity , Viral Envelope Proteins , Antigens, Viral/chemistry , Antigens, Viral/immunology , Antigens, Viral/physiology , Glycoproteins/chemistry , Glycoproteins/immunology , Glycoproteins/physiology , Protein Conformation , Rabies virus/immunology , Rabies virus/metabolism , Virulence , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology , Viral Envelope Proteins/physiology
14.
Yonsei Medical Journal ; : 828-835, 2008.
Article in English | WPRIM | ID: wpr-153693

ABSTRACT

PURPOSE: Chikungunya virus (CHIKV) causes endemic or epidemic outbreaks of CHIKV fever, which is a mosquitoe-transmitted viral disease in Africa, India, South-East Asia, and recently Southern Europe. Currently, serological diagnostic tests such as hemagglutination inhibition test (HI test), in-house IgM capture enzyme-linked immunosorbent assays (ELISA), and indirect immunofluorescence test were used for diagnosis of chikungunya fever, which are based on whole virus antigens. MATERIALS AND METHODS: CHIKV E1, and E2 envelope proteins for the CHIKV-specific serodiagnostic reagents for chikungunya fever were expressed in baculovirus expression system. The seroreactivity of recombinant CHIKV E1 and E2 envelope proteins were evaluated using sera panels of patients from Laboratoire Marcel Merieux by indirect IgM capture ELISA. RESULTS: The recombinant CHIKV E1 and E2 envelope protein showed sensitivity of 77.5% and 90%, respectively. The specificities of both CHIKV E1 and E2 envelope proteins were 100%. CONCLUSION: The recombinant CHIKV E1 and E2 envelope proteins could be a useful diagnostic reagent for CHIKV infection.


Subject(s)
Animals , Alphavirus Infections/diagnosis , Baculoviridae/genetics , Cells, Cultured , Chikungunya virus/genetics , Cloning, Molecular , Enzyme-Linked Immunosorbent Assay/methods , Recombinant Proteins/immunology , Sensitivity and Specificity , Serologic Tests/methods , Viral Envelope Proteins/immunology
15.
Braz. j. med. biol. res ; 40(6): 813-818, June 2007. graf
Article in English | LILACS | ID: lil-452686

ABSTRACT

Two recombinant baculoviruses were produced in order to obtain a bovine viral diarrhea virus (BVDV) immunogen: AcNPV/E2 expressing E2 glycoprotein, and AcNPV/E0E1E2 expressing the polyprotein region coding for the three structural proteins of BVDV (E0, E1, and E2). Mice were immunized with Sf9 cells infected with the recombinant baculoviruses in a water in oil formulation and the production of neutralizing antibodies was evaluated. Since E2 elicited higher neutralizing antibody titers than E0-E1-E2 polyprotein, it was selected to immunize cattle. Calves received two doses of recombinant E2 vaccine and were challenged with homologous BVDV 37 days later. The recombinant immunogen induced neutralizing titers which showed a mean value of 1.5 ± 0.27 on the day of challenge and reached a top value of 3.36 ± 0.36, 47 days later (84 days post-vaccination). On the other hand, sera from animals which received mock-infected Sf9 cells did not show neutralizing activity until 25 days post-challenge (62 days post-vaccination), suggesting that these antibodies were produced as a consequence of BVDV challenge. Even when no total protection was observed in cattle, in vitro viral neutralization assays revealed that the recombinant immunogen was able to induce neutralizing antibody synthesis against the homologous strain as well as against heterologous strains in a very efficient way.


Subject(s)
Animals , Cattle , Mice , Bovine Virus Diarrhea-Mucosal Disease/prevention & control , Diarrhea Viruses, Bovine Viral/immunology , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Bovine Virus Diarrhea-Mucosal Disease/immunology , Neutralization Tests , Recombinant Proteins/immunology , Time Factors , Vaccines, Synthetic/immunology
16.
Saudi Medical Journal. 2006; 27 (6): 788-793
in English | IMEMR | ID: emr-80804

ABSTRACT

To asses the commercial available enzyme-linked immunosorbent assays [ELISA] for differentiation of herpes simplex virus type 1 [HSV-1] and type 2 [HSV-2] antibodies. The study was performed between January 1997 to November 2002 in the Division of Virology, Department of Pathological Sciences, Central Manchester Healthcare Trust and University of Manchester, Manchester, United Kingdom. Assays based upon type-specific glycoprotein G-1 [gG-1] for HSV-1, and glycoprotein G-2 [gG-2] from HSV-2 were evaluated to differentiate between HSV-1 and HSV-2 antibodies. Using 5 different ELISA tests, 2 panels of serum samples were tested. Panel one consisted of 88 sera, selected from the serum bank of the Clinical Virology Laboratory, Manchester Royal Infirmary; panel 2 comprised of 90 sera selected from samples collected from Bangladeshi female commercial workers. The data of this study showed that a high rate of gG-1 based immunoassays ranged from 87.9-100% for sensitivity and 51.5-100% specificity. Although there are several immunoassays were claimed to differentiate between HSV-1 and HSV-2 antibodies, selection of these assays should be carefully interpreted with the overall clinical framework provided by detailed sexual history and genital examination


Subject(s)
Humans , Female , Herpesvirus 2, Human/immunology , Antibodies, Viral/blood , Immunoassay , Reagent Kits, Diagnostic , Viral Envelope Proteins/immunology , Predictive Value of Tests , Enzyme-Linked Immunosorbent Assay
17.
Asian Pac J Allergy Immunol ; 2004 Mar; 22(1): 49-60
Article in English | IMSEAR | ID: sea-36481

ABSTRACT

DNA immunization represents one of the promising HIV-1 vaccine approaches. To overcome the obstacle of genetic variation, we used the last common ancestor (LCA) or "center-of-the-tree" approach to study a DNA fragment of the HIV-1 envelope surrounding the V3 region. A humanized codon of the 297-bp consensus ancestral sequence of the HIV-1 envelope (codons 291-391) was derived from the 80 most recent HIV-1 isolates from the 8 circulating HIV-1 subtypes worldwide. This 297-bp humanized "multi-clade" V3 DNA was amplified by a PCR-based technique. The PCR product was well expressed in vitro whereas the corresponding non-humanized V3 DNA (subtype A/E) could not be expressed. However, both V3 DNA constructs as well as the full-length HIV-1 envelope construct (A/E) were found to be immunogenic in mice by the footpad-swelling assay. Moreover, intracellular and extracellular interferon-gamma could be detected upon in vitro stimulation of spleen cells although the response was relatively weak. Further improvement of our humanized V3 DNA is needed.


Subject(s)
AIDS Vaccines/immunology , Animals , DNA, Viral/genetics , Epitopes/immunology , Female , HIV-1/genetics , Mice , Mice, Inbred BALB C , Models, Animal , Polymerase Chain Reaction , Vaccines, DNA/immunology , Viral Envelope Proteins/immunology
18.
Article in English | IMSEAR | ID: sea-112772

ABSTRACT

The presently recommended tests for assaying rabies antibodies like mouse neutralization test (MINT) and rapid fluorescent focus inhibition test (RFFIT) are either time consuming or expensive and are generally performed in reference laboratories. There is a need to develop a specific and rapid method for detection of rabies antibodies that can be used to monitor sero-conversion after pre-or post-exposure vaccination. In this study, we have developed a passive haemagglutination (PHA) using purified rabies virus glycoprotein coupled to sheep erythrocytes using chromium chloride (0.04%) as a coupling agent. Two hundred and fifty five serum samples from people vaccinated with different rabies vaccines, 16 paired serum and CSF samples from autopsy confirmed cases of paralytic rabies, and serum samples from 65 normal healthy controls were tested and evaluated in comparison to standard MNT. Among the vaccinees, 250 samples were positive both by MNT and PHA but 5 samples were negative by PHA and positive by MNT. The titres obtained by PHA were lower compared to MNT, but there was significant correlation between the two (r=0.885). The specificity of the test was 99.7% and sensitivity was 100% as compared to MNT. Thus this PHA test promises to be a rapid and specific test for assaying rabies antibodies and may be useful in screening large number of serum samples for sero conversion after vaccination. It may also assist in rapid laboratory confirmation of paralytic rabies cases, based on detection of antibodies in CSF and serum.


Subject(s)
Antigens, Viral , Glycoproteins/immunology , Hemagglutination Tests/methods , Hemagglutination, Viral/immunology , Humans , Rabies/immunology , Rabies Vaccines/immunology , Viral Envelope Proteins/immunology
20.
Rev. argent. microbiol ; 33(1): 15-21, ene.-mar. 2001.
Article in Spanish | LILACS | ID: lil-332506

ABSTRACT

The BVDV glycoproteins gp48 and gp53 were expressed in the baculovirus eukaryotic system. Both recombinant proteins were recognized in western blot analysis by monoclonal antibodies and polyclonal serum. Immunofluorescent test demonstrated that gp53 was localized on the cell surface whereas gp48 was in the cytoplasm. The expressed proteins were extracted by non-denaturing detergent treatment. Rabbit antiserum raised against gp53 recombinant protein efficiently neutralized the virus. These results demonstrate that the recombinant proteins have immunological properties similar to those of the native viral protein and that they can be useful as diagnostic reagents.


Subject(s)
Animals , Cattle , Male , Rabbits , Viral Envelope Proteins/isolation & purification , Diarrhea Viruses, Bovine Viral/chemistry , Blotting, Western , Cell Line , Immune Sera , Kidney , Nucleopolyhedroviruses , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/isolation & purification , Spodoptera , Testis/cytology , Transfection , Genetic Vectors/genetics , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/immunology
SELECTION OF CITATIONS
SEARCH DETAIL